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 2 

Abstract. A new land coupled data assimilation (LCDA) system based on the four-dimensional ensemble 14 

variational (4DEnVar) method is developed and applied to the fully coupled Energy Exascale Earth 15 

System Model version 2 (E3SMv2). The dimension-reduced projection four-dimensional variational 16 

(DRP-4DVar) method is employed to implement 4DVar using the ensemble technique instead of the 17 

adjoint technique. Monthly mean soil moisture and temperature analyses from a global land reanalysis 18 

product are assimilated into the land component of E3SMv2 with a one-month assimilation window 19 

along the coupled model trajectory from 1980 to 2016. The coupled assimilation experiment is evaluated 20 

using multiple metrics, including the cost function, assimilation efficiency index, correlation, root mean 21 

square error and bias, and compared with a control simulation without land data assimilation. The LCDA 22 

system yields improved simulation of soil moisture and temperature compared with the control 23 

simulation, with improvements found throughout the soil layers and in many regions of the global land. 24 

Furthermore, significant improvements are also found in reproducing the time evolution of the 2012 U.S. 25 

Midwest drought, highlighting the crucial role of land surface in drought lifecycle. The LCDA system is 26 

intended to be a foundational resource to investigate land-derived climate predictability for future 27 

prediction research by the E3SM community.  28 
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1 Introduction 29 

The intrinsic chaos of the atmosphere limits traditional weather forecasting to roughly two weeks 30 

(Simmons and Hollingsworth, 2002). The feasibility of atmospheric predictability beyond two weeks lies 31 

with the interactions of the atmosphere with slowly varying components of the Earth system such as the 32 

ocean or land surface, or from predictable external forcing (Guo et al., 2012). Climate prediction can 33 

therefore be conceptually divided into both an initial value and a forced boundary value problem (Collins 34 

and Allen, 2002; Conil et al., 2007). One of the biggest technical challenges for improving the quality of 35 

climate predictions is the initialization of coupled models from observations (Taylor et al., 2012). 36 

Much work has been devoted to initializing climate models for practicable Earth system prediction, 37 

including uncoupled and coupled data assimilation (CDA) methods. Some modeling centers employ 38 

uncoupled initialization methods that directly utilize reanalysis data or stand-alone model states driven 39 

by observations as initial conditions (ICs) (Du et al., 2012; Prodhomme et al., 2016). However, ICs 40 

derived from uncoupled methods often exhibit poor consistency between model components (Balmaseda 41 

et al., 2009). Initializing a coupled model with data obtained from another model may result in initial 42 

shocks due to inconsistencies and eventually produce low prediction skills (Boer et al., 2016). A more 43 

effective initialization would involve performing a CDA with observations for each coupled model 44 

individually (Ardilouze et al., 2017). The CDA methods incorporate observations into one or several 45 

components of the coupled model through data assimilation techniques, with long-term assimilation 46 

cycles executed under the coupled modeling framework (He et al., 2020a). The CDA method outperforms 47 

the uncoupled method due to the constraint of the coupled model, leading to better consistency of the 48 

ICs with the coupled model (He et al., 2020b). 49 

The CDA approaches for initializing coupled models are becoming increasingly prevalent, using a 50 

diverse range of data assimilation techniques. Most of these methods utilize simple nudging or nudging-51 

based Incremental Analysis Update (IAU) approaches where analysis increments into a model integration 52 

are incorporated in a gradual manner (Bloom et al., 1996; Shaffrey et al., 2017; Smith et al., 2013). Both 53 

techniques restore the model states to observations by introducing new terms that are proportional to the 54 

discrepancy between observations and model states in the prognostic equations (Hoke and Anthes, 1976). 55 

These techniques are time-saving and easy to implement, but the principal disadvantages of these 56 
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methods are the necessity to interpolate observations at every time step and the reliance on experience 57 

and experimentation to determine the nudging coefficients (He et al., 2017; Wei et al., 2017). Some 58 

modeling centers have developed more advanced CDA systems using variational and filtering approaches, 59 

such as the three-dimensional variational data assimilation (3DVar) (Lin et al., 2017; Yao et al., 2021) 60 

and ensemble-based techniques like the ensemble Kalman filter (EnKF) (Santanello et al., 2016) or 61 

ensemble optimal interpolation (EnOI) (Wu et al., 2018). The former generally utilizes the stationary 62 

background error covariance and assimilates observations sequentially (Lin et al., 2017). In contrast, the 63 

latter uses the flow-dependent forecast error covariance and recursively integrates observations into the 64 

model (Lei and Hacker, 2015). The objective of four-dimensional variational data assimilation (4DVar) 65 

is to optimize four-dimensional model states and provide a compatible temporal trajectory that matches 66 

observational records across each assimilation window (Mochizuki et al., 2016). The 4DVar method is 67 

an advanced assimilation technique that exhibits superiority over other assimilation techniques like the 68 

nudging and 3DVar in multiple aspects. Initial shocks that influence prediction skills can be significantly 69 

minimized by the 4DVar approach due to the dynamical consistency between the model and ICs (Sugiura 70 

et al., 2008). However, few modeling centers utilize 4DVar-based initialization methods because of the 71 

challenge of adjoint calculation and its high computational cost. 72 

To capitalize on the strengths of both ensemble and variational techniques, there has been a growing 73 

interest in developing new hybrid data assimilation methods. One notable example is the hybrid EnKF-74 

3DVar method introduced by Hamill and Snyder (2000), which combines stationary covariances from 75 

3DVar with flow-dependent covariances obtained from short-range forecasts. Another hybrid approach 76 

is the Ensemble Transform Kalman Filter (ETKF)-3DVar, proposed by Wang et al. (2008). This method 77 

merges ensemble covariances with stationary covariances using the extended control variable technique 78 

and preserves ensemble perturbations through the ETKF. Lastly, Liu et al. (2008) developed the four-79 

dimensional ensemble-variational (4DEnVar) algorithm as an additional hybrid method. This technique 80 

utilizes an ensemble forecast to generate flow-dependent forecast error covariances and presents a way 81 

to perform 4DVar optimization without the need for tangent linear and adjoint models (Lorenc et al., 82 

2015). 83 

In this study, we introduce the development of the 4DEnVar-based land coupled data assimilation 84 
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(LCDA) system for the Energy Exascale Earth System Model version 2 (E3SMv2) (Golaz et al., 2022). 85 

The 4DEnVar method in this LCDA system is the dimension-reduced projection 4DVar (DRP-4DVar; 86 

Wang et al., 2010) which utilizes the ensemble technique as an alternative to the adjoint technique for 87 

implementing 4DVar. In this LCDA system, monthly mean soil moisture and temperature data from a 88 

global land reanalysis product are assimilated to constrain the land fields of a coupled climate model 89 

with a one-month assimilation window. The primary goal of the LCDA system is intended to be a 90 

foundational resource for exploring predictability of the Earth system by the E3SM community, 91 

specifically focusing on understanding the sources of predictability provided by land versus ocean. This 92 

LCDA system also provides the groundwork for future actionable predictions of Earth system variability 93 

using E3SM. 94 

The objective of this paper is to introduce the implementation of the 4DEnVar-based LCDA system 95 

for the land component of E3SMv2. In Sect. 2, we provide an overview of the E3SMv2 model, describe 96 

the 4DEnVar methodology in detail and outline the framework of the 4DEnVar-based LCDA system. 97 

Preliminary evaluation of the LCDA system is presented in Sect. 3. Finally, major conclusions are 98 

discussed in Sect. 4. 99 

 100 

2 Methods 101 

2.1 Model Description 102 

The model used in this study is a relatively new state-of-the-art Earth system model known as 103 

Energy Exascale Earth System Model version 2 (E3SMv2), supported by the U.S. Department of Energy 104 

(DOE) to improve actionable Earth system predictions and projections (Leung et al., 2020). The 105 

atmospheric component is the E3SM Atmosphere Model version 2 (EAMv2), which is built on the 106 

spectral-element atmospheric dynamical core with 72 vertical levels (Dennis et al., 2012; Taylor et al., 107 

2020). At the standard resolution, EAMv2 is applied on a cubed sphere with a grid spacing of ~100 km 108 

for the dynamics. The ocean component is the Model for Prediction Across Scales-Ocean (MPAS-O), 109 

which applies the underlying spatial discretization to the primitive equations with 60 layers using a z-110 

star vertical coordinate (Petersen et al., 2018; Reckinger et al., 2015). The sea ice component is MPAS-111 

SI, which shares the same Voronoi mesh with MPAS-O, with mesh spacing varying between 60km in the 112 
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mid-latitudes and 30 km at the equator and poles (Golaz et al., 2022). The land component is the E3SM 113 

Land Model version 2 (ELMv2), which is based on the Community Land Model version 4.5 (CLM4.5) 114 

(Oleson et al. 2013). Simulations are run in a satellite phenology mode with prescribed leaf area index, 115 

and the prescribed vegetation distribution has been updated for better consistency between land use and 116 

changes in plant functional types described by Golaz et al. (2022). The river transport component is the 117 

Model for Scale Adaptive River Transport version 2 (MOSARTv2), which provides detailed 118 

representation of riverine hydrologic variables (Li et al., 2013). These five components exchange fluxes 119 

through the top-level coupling driver version 7 (CPL7) (Craig et al., 2012). Further details on the 120 

E3SMv2 model are described in Golaz et al. (2022). 121 

 122 

2.2 Observational Dataset 123 

Monthly mean soil moisture and soil temperature data used in this study are produced by the Global 124 

Land Data Assimilation System (GLDAS; Rodell et al., 2004). The GLDAS products generate optimal 125 

fields of land surface states and fluxes in near-real time by forcing multiple offline land surface models 126 

with observation-based data fields. These reliable and high-resolution global land surface datasets from 127 

GLDAS are extensively utilized in weather and climate studies, hydrometeorological investigations and 128 

water cycle research (Chen et al., 2021; Zhang et al., 2018). The GLDAS datasets have been available 129 

globally at high spatial resolution since January 1979 and can be accessed through the Goddard Earth 130 

Science Data and Information Service Center. For more consistency with ELM, we utilize GLDAS data 131 

produced by CLM. 132 

 133 

2.3 Data Assimilation Scheme 134 

The 4DEnVar algorithm in this study is based on the DRP-4Dvar technique, which is an efficient 135 

pathway for applying 4Dvar through using the ensemble method rather than the adjoint technique (Wang 136 

et al., 2010). The DRP-4Dvar method generates the optimal estimation in the sample space through 137 

aligning the observations with ensemble samples along the coupled model trajectory (Liu et al., 2011). 138 

Following Wang et al. (2010), the original 4DVar can be implemented to produce the optimal 139 

analysis in the sample space by minimizing a new cost function: 140 
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                             𝑥𝑎 = 𝑥𝑏 + 𝑥𝑎
′ = 𝑥𝑏 + 𝑃𝑥𝛼𝑎                                    (1) 141 

𝐽(𝛼𝑎) = min
𝛼𝜖𝐸𝑚

𝐽 (𝛼)                                        (2) 142 

 𝐽(𝛼) =
1

2
𝛼𝑇𝐵𝛼

−1𝛼 +
1

2
(𝑃𝑦𝛼 − �̃�𝑜𝑏𝑠

′ )
𝑇

(𝑃𝑦𝛼 − �̃�𝑜𝑏𝑠
′ )                     (3) 143 

The optimal solution to the aforementioned minimization problem is formulated as: 144 

  𝛼𝑎 = (𝐵𝛼
−1 + 𝑃𝑦

𝑇𝑃𝑦)−1𝑃𝑦
𝑇�̃�𝑜𝑏𝑠

′                                (4) 145 

Here, 𝑥𝑎, 𝑥𝑏, and 𝑥𝑎
′  represent the optimal analysis, background, and analysis increment, respectively; 146 

𝑃𝑥 is the projection matrix comprised of initial perturbation samples; 𝛼 is the weight coefficients; the 147 

superscript 𝑇  represents the transpose; 𝐵  denotes the background error covariance matrix; 𝑃𝑦  is the 148 

projection matrix consisting of observational perturbation samples; �̃�𝑜𝑏𝑠
′   represents the weighted 149 

observational innovation. 150 

 151 

2.4 4DEnVar-based LCDA System 152 

The 4DEnVar-based LCDA system is developed to assimilate the full-field monthly mean soil 153 

moisture and temperature data from the GLDAS analysis dataset into the land component of E3SMv2 154 

using the DRP-4DVar method. Two sets of numerical experiments are conducted to evaluate the 155 

performance of land data assimilation in the LCDA system. The control simulation (CTRL) is a 36-year 156 

freely coupled integration driven by observed external forcing from 1980 to 2016. CTRL provides the 157 

benchmark for assessing the performance of the LCDA system. The assimilation experiment (Assim) is 158 

conducted from 1980 to 2016 based on the LCDA system in which the GLDAS data are assimilated into 159 

the land state variables from the first to the tenth layer with a one-month assimilation window under the 160 

coupled modeling framework. The effectiveness of the LCDA system is evaluated through the comparison 161 

between Assim and CTRL. In both Assim and CTRL, the transient-historical external forcings are 162 

prescribed following the CMIP6 protocol (Eyring et al., 2016). 163 

The flowchart of the 4DEnVar-based LCDA system is illustrated in Figure 1. The DRP-4DVar 164 

method incorporates three inputs: model background, observational innovation and 30 perturbation 165 

samples. First, the E3SMv2 model is executed for one month, during which state variables such as model 166 

background (𝑥𝑏), observational operator (𝐻) and observational background (𝑦𝑏) are stored. The model 167 

background (𝑥𝑏) denotes monthly initial states before assimilation, and the observational operator (𝐻) 168 
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represents a one-month integration by the coupled model to generate monthly mean model outputs (𝑦𝑏). 169 

Second, upon completion of the one-month coupled run, the observational innovation (�̃�𝑜𝑏𝑠
′ ) is determined 170 

by calculating the differences in soil moisture and temperature between the monthly mean GLDAS data 171 

(𝑦𝑜𝑏𝑠) and model outputs (𝑦𝑏). From the 100-year sample database of the E3SMv2 Pre-industrial Control 172 

(PI-CTRL) simulation, 30 monthly mean perturbation samples (�̃�′) are chosen according to the highest 173 

absolute correlation with the observational innovation. The corresponding 30 monthly IC samples (𝑥′) 174 

are also obtained. Finally, the analysis increment is generated in the sample space and the optimal analysis 175 

(𝑥𝑎) is calculated using the DRP-4DVar algorithm. To alleviate the spurious correlations, a localization 176 

scheme is implemented in the 4DEnVar-based LCDA system (Wang et al., 2018). 177 

The schematic diagram in Figure 2 outlines the assimilation process of the 4DEnVar-based LCDA 178 

system in E3SMv2. The assimilation process mainly consists of three steps within each one-month 179 

assimilation window: 1) the E3SMv2 model is initially executed for one month to generate the simulated 180 

monthly mean soil moisture and temperature (𝑦𝑏
𝑙𝑛𝑑); 2) the observational innovation (𝑦𝑜𝑏𝑠

′ ) is obtained 181 

through subtracting model simulation (𝑦𝑏
𝑙𝑛𝑑) from the monthly mean observation (𝑦𝑜𝑏𝑠

𝑙𝑛𝑑). This innovation 182 

is then applied to formulate the optimal assimilation analysis of land surface (𝑥𝑎
𝑙𝑛𝑑) at the beginning of 183 

the assimilation window through the DRP-4DVar method; 3) the E3SMv2 model is rewound to the start 184 

of the month and the second one-month model run is executed using the optimal ICs (𝑥𝑎) to generate the 185 

background for the next assimilation cycle. Due to multi-component interactions during the one-month 186 

free coupled integration, the observed land information can potentially benefit other components (e.g., 187 

atmosphere and ocean) in the coupled modeling framework (Li et al., 2021; Shi et al., 2022). 188 

 189 

2.5 Evaluation Metrics 190 

The reduction rate of the cost function is a significant metric for verifying the effectiveness of the 191 

LCDA system and evaluating the extent of observational information assimilated by the coupled model, 192 

which is formulated as: 193 

1

2
(𝑦𝑜𝑏𝑠−𝑦𝑎)𝑇𝑅−1(𝑦𝑜𝑏𝑠−𝑦𝑎)−

1

2
(𝑦𝑜𝑏𝑠−𝑦𝑏)𝑇𝑅−1(𝑦𝑜𝑏𝑠−𝑦𝑏)

1

2
(𝑦𝑜𝑏𝑠−𝑦𝑏)𝑇𝑅−1(𝑦𝑜𝑏𝑠−𝑦𝑏)

× 100%                   (5) 194 

where 𝑦𝑜𝑏𝑠 represents the GLDAS data, 𝑦𝑎  denotes the monthly mean analyses, 𝑦𝑏 is the observation-195 

space background, and 𝑅 is defined as the observation error covariance matrix. Negative value for this 196 

https://doi.org/10.5194/gmd-2023-124
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.



 9 

metric indicates that observational information has been correctly incorporated into the model variables. 197 

Following Yin et al. (2014), the assimilation efficiency (AE) index is defined to evaluate the efficiency 198 

of the LCDA system as follows: 199 

𝐴𝐸 =
𝑅𝑀𝑆𝐸𝐴𝑠𝑠𝑖𝑚

𝑅𝑀𝑆𝐸𝐶𝑇𝑅𝐿
− 1                                       (6) 200 

In this equation, 𝑅𝑀𝑆𝐸𝐴𝑠𝑠𝑖𝑚 is the root mean square error (RMSE) between Assim and GLDAS data, 201 

while 𝑅𝑀𝑆𝐸𝐶𝑇𝑅𝐿  represents the RMSE between CTRL and GLDAS data. Negative (positive) AE value 202 

indicates improvements (degradations) by the assimilation. In the following sections, we continue to use 203 

the GLDAS data as the reference dataset to verify the correctness of the LCDA system. 204 

 205 

3 Results 206 

3.1 Evaluation of the cost function 207 

Figure 3 displays the time series of the monthly reduction rate of the cost function in the 4DEnVar-208 

based LCDA system. In the first month, the reduction rate reaches approximately 28.8% in Assim. Over 209 

the subsequent months, Assim maintains the average reduction rate of 8.5% throughout the entire period. 210 

Furthermore, negative reduction rates are observed in 96% of the total months, indicating the effectiveness 211 

of the LCDA system. These results suggest that the LCDA system is correctly implemented, with the 212 

observational data successfully assimilated into the coupled model. 213 

 214 

3.2 Evaluation of the AE index 215 

The spatial pattern of the AE index for soil moisture at different depths is depicted in Figure 4. The 216 

AE value exhibits negative signal in most areas from the second to the eighth layer, suggesting the 217 

reduction in RMSE after assimilation. Significant improvements appear over North America, Northern 218 

Africa, Europe, and Northern Asia. The largest improvement in these soil layers is observed in the 219 

northern part of the Eurasian continent. However, assimilation performance is degraded in South America 220 

and monsoon regions (e.g., East Asia and India). This is consistent with the findings in other studies that 221 

assimilation updates in monsoon regions are limited due to the dominant impact of monsoon circulations 222 

(Timouk et al., 2009; Brocca et al., 2017). The first soil layer, which is highly susceptible to atmospheric 223 

forcing, also shows degradation in large areas. Furthermore, some degradations are found in the deep 224 
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layers, especially the ninth and tenth layers. This may be linked to the quality of assimilation data and 225 

other terrestrial factors, as noted in previous studies (Liu and Mishra, 2017; Zeng and Decker, 2009). 226 

Figure 5 shows the spatial distribution of the AE index for soil temperature from surface to deep 227 

layers. Most grid cells from the first to the ninth layer are dominated by negative AE signals, indicating 228 

improved performance after assimilation. Moreover, the spatial patterns across different soil layers are 229 

highly consistent with each other and exhibit similar magnitudes in most areas. Notable improvements 230 

are observed in Eastern Russia, Europe, North America, Australia, and large parts of Eurasia. In contrast, 231 

slight degradations appear over Northwestern Africa, Southern South America and Saudi Arabia. This 232 

may be partly related to assimilation uncertainties and possible atmospheric noise, as shown by many past 233 

studies (Kwon et al., 2016; Lin et al., 2020). Some locations with degradation are also noted in the tenth 234 

layer, which still requires further improvement. 235 

     236 

3.3 Evaluation of the correlation 237 

Figure 6 displays the spatial patterns of the differences in temporal correlations for soil moisture 238 

between Assim and CTRL with observations across different soil layers. A majority of global regions in 239 

Assim exhibit higher correlations from the first to the tenth layer compared with CTRL, suggesting the 240 

overall good performance of the LCDA system. Enhanced correlations in deep soil layers are more 241 

prominent than in shallow layers, which may be attributed to the longer memory of soil processes in the 242 

deeper layers (Wang et al., 2010). Improved correlations appear over Northern Africa, North America, 243 

Eurasia, and Australia. However, some scattered areas show slight degradations, such as South America, 244 

Central Africa, and Eastern Russia. Overall, Assim outperforms CTRL with higher correlation (Figure 6) 245 

and lower RMSE (Figure 4) in many regions, such as Europe, Western Russia, Northern Africa, North 246 

America, and Central Eurasia. 247 

The correlation differences in soil temperature between Assim and CTRL from surface to deep 248 

layers are shown in Figure 7. Assim yields improved correlations from the first to the ninth layer across 249 

the global domain, with the exception of the northern region of the Eurasian continent. Furthermore, 250 

similar spatial patterns and magnitudes are observed in the performance of different soil layers except 251 

for the tenth layer, implying the significant heat transfer from the surface to deep zone that constrains 252 
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soil temperature across the soil column. Notable improvements are located over South America, North 253 

America, Northern Africa, Australia, and Southern Eurasia. Nevertheless, some degradations appear over 254 

Central Africa, Eastern Russia, and part of South China. Obvious degradations are also found in the tenth 255 

layer. The diminished performance may come from uncertainties in the assimilation data and imbalances 256 

between land variables during data assimilation, as supported by the findings of other studies (Park et al., 257 

2018; Zhang et al., 2014). Assim shows superior performance over CTRL for soil temperature with higher 258 

correlation (Figure 7) and lower RMSE (Figure 5) in many regions, including South America, Southern 259 

Eurasia, Australia, and North America. 260 

 261 

3.4 RMSE and bias of the global mean soil moisture and temperature 262 

The vertical distributions of RMSE differences between Assim and CTRL for soil moisture and 263 

temperature are evaluated in Figure 8. Assim shows noticeable improvements with reduced RMSE for 264 

soil moisture and temperature at all vertical levels compared with CTRL. For soil moisture, the reduction 265 

of RMSE increases with depth from the upper to middle levels, reaching its maximum at the eighth layer. 266 

However, this value then decreases as the depth extends further into the tenth layer. This decrease is likely 267 

due to the overestimation of observation errors in deep soil layers. For soil temperature, the reduction of 268 

RMSE exhibits similar magnitude across shallow layers, which may be explained by the heat transfer 269 

process within the soil. From the middle to deep levels, this reduction initially increases with depth, 270 

peaking at the eighth layer, and then gradually decreases. In the ninth and tenth layers, there is potential 271 

for further improvement in assimilation performance. 272 

Figure 9 shows the time evolutions of the vertically averaged global mean soil moisture and 273 

temperature bias and RMSE differences. For soil moisture bias (Figure 9a), CTRL exhibits dry biases 274 

during the first twenty years and wet biases afterwards. In contrast, Assim shows smaller biases during 275 

both periods by reducing the dry bias prior to ~2000 and the wet bias thereafter. Assim also exhibits 276 

reduced RMSE (Figure 9b) for soil moisture throughout the entire 37-year period. For soil temperature 277 

bias (Figure 9c), CTRL and Assim display comparable performances, possibly due to the small magnitude 278 

of model deviation in soil temperature. The RMSE differences (Figure 9d) suggest that Assim decreases 279 

the RMSE for soil temperature in most months, with 91.7% of the total months in Assim exhibiting lower 280 
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RMSE than CTRL. In summary, the superior performance for both soil moisture and temperature in Assim 281 

demonstrates that land observational information has been effectively incorporated into the model 282 

variables through the LCDA system. 283 

Noticeably, the simulated soil temperature and soil moisture display similar long-term trends, with 284 

cold and dry biases before ~2000 and warm and wet biases afterwards. The soil temperature biases may 285 

be related to the global surface air temperature simulated in E3SMv2, which is notably too cold compared 286 

to the observed record during the 1970s and 1980s while the model warms up quickly after ~year 2000 287 

(see Figure 23 of Golaz et al., 2022). The global surface air temperature biases in E3SMv1 and v2 during 288 

the past decades have been attributed to the strong aerosol forcing in the model (Golaz et al., 2019; 2022). 289 

As the global mean precipitation scales with the surface temperature at ~2% per degree (Allen and Ingram, 290 

2002), model biases in surface temperature are reflected in biases in precipitation and hence soil moisture, 291 

resulting in similar long-term trends between soil temperature and soil moisture biases in the simulations. 292 

 293 

3.5 2012 U.S. Midwest Drought 294 

To further evaluate the performance of the LCDA system, we preliminarily investigate the impact of 295 

land data assimilation on simulating the temporal evolution of the U.S. Midwest drought in 2012. Time 296 

series of soil moisture percentiles over the Midwest (36° -50° N, 102° -88° W) demonstrate significant 297 

improvements by Assim in reproducing the time evolution of agricultural drought in 2012 compared with 298 

CTRL (Figure 10). From the observation based on ERA-Interim data, the agricultural drought starts in 299 

August 2011, follows by a brief relief in early spring of 2012, peaks in September 2012, and recovers by 300 

January 2013. The drought develops rapidly between May and July 2012 over a wide-spread area 301 

including the central and midwestern U.S. This flash drought caused significant agricultural damages and 302 

economic losses. 303 

The free running CTRL experiment fails to simulate the temporal evolution of the 2012 Midwest 304 

drought, with a correlation coefficient between CTRL and observation of only 0.27. The onset and peak 305 

of the drought are remarkably well captured by Assim, although the drought recovery occurs one month 306 

earlier than observed. The correlation coefficient of the Assim time series with observation is 0.61, which 307 

is statistically significant at the 95% confidence level. Our results highlight the importance of land surface 308 
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states for drought lifecycle, with the potential to improve future drought predictions through the 309 

implementation of the LCDA system. 310 

We further compare the time series of observed and simulated precipitation anomaly over the Midwest 311 

during the 2012 U.S. Midwest drought (Figure 11). As a free running simulation, the precipitation in 312 

CTRL is not expected to reproduce the overall dry anomaly in observation. It is noteworthy that the 313 

magnitude of the precipitation anomaly is remarkably well captured by Assim. More specifically, Assim 314 

can reproduce the positive precipitation anomaly from February 2012 to April 2012 and the dry anomaly 315 

from May 2012 to October 2012. The correlation coefficient of the Assim time series with observation is 316 

0.40, much higher than that of CTRL (-0.21). The dramatic increase in the correspondence in precipitation 317 

between Assim and observation strongly suggests that the effects of land data assimilation can transmit 318 

to the atmosphere through land-atmosphere interactions in the LCDA system, which may improve 319 

precipitation simulation. Improvements in the atmosphere states through land data assimilation highlight 320 

the important role of the land surface in drought development. 321 

 322 

4 Conclusions 323 

In this study, we developed the 4DEnVar-based LCDA system for the E3SMv2 model and evaluated 324 

the performance of the LCDA system. The DRP-4DVar method was employed for implementing 4DVar 325 

using the ensemble method rather than the adjoint technique. Special attention is paid to directly 326 

assimilating monthly mean land reanalysis data in this system without interpolating to every time step, as 327 

needed in the nudging method. Within each one-month assimilation window, we assimilate observed land 328 

information into the coupled model without breaking the land-atmosphere interaction, which is important 329 

for the LCDA system to be used to understand the potential sources of predictability provided by land. 330 

The LCDA system is conducted from 1980 to 2016, and its performance is evaluated using multiple 331 

metrics, including the cost function, AE index, correlation, RMSE and bias. Compared with CTRL, the 332 

cost function is reduced by Assim in most months, suggesting that observational data has been effectively 333 

incorporated into the model. In terms of both soil moisture and temperature, Assim outperforms CTRL 334 

with lower RMSE and higher temporal correlation in many regions, especially in North America, 335 

Northern Africa, Australia, and large parts of Eurasia. However, some degradations are observed in the 336 
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deep layers, which requires future research to better characterize observation errors in these deep zones. 337 

For soil moisture bias, Assim further decreases the dry bias during the first twenty years and the wet bias 338 

thereafter. It is noteworthy that the subseasonal-to-seasonal time evolution of soil moisture percentiles 339 

during the 2012 U.S. Midwest drought can be quite well captured in Assim, underscoring the significant 340 

role of land surface states in drought propagation. The dramatic increase in the temporal correlations for 341 

precipitation anomaly in Assim also demonstrates that the impacts of land data assimilation could 342 

potentially contribute to the improvement in the atmospheric states through land-atmosphere interactions, 343 

highlighting the importance of the land surface in drought development. 344 

Future improvements in the LCDA system will depend on the use of more observations and 345 

improving the quality of the ensemble covariance. It is possible that assimilation performance is restricted 346 

in specific domains due to biased atmospheric and oceanic forcing from the coupled model. Hence the 347 

continual integration of atmospheric and oceanic assimilations into the LCDA system could be an 348 

important way to further enhance its performance, particularly in regions where the land is primarily 349 

influenced by other components. Given the independence of the LCDA system from the coupled model, 350 

future exploration will focus on its implementation in other model components (e.g., atmosphere, ocean, 351 

and sea ice) or different climate models. To this end, the application of the LCDA system would motivate 352 

future work to better understand the roles of the land surface in climate variability and provide a 353 

foundational resource for future predictability studies by the E3SM community. 354 

 355 

Code and data availability. The E3SMv2 source codes used in this study can be accessed on Zenodo at 356 

https://zenodo.org/record/8194050. The GLDAS monthly soil moisture and soil temperature data can be 357 

downloaded from the website 358 

https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20monthly&page=1. The GPCP monthly 359 

precipitation data are available online (https://psl.noaa.gov/data/gridded/data.gpcp.html). The ERA-360 

Interim monthly soil moisture data are available at https://apps.ecmwf.int/archive-361 

catalogue/?levtype=sfc&type=an&class=ei&stream=moda&expver=1. The model data used in this study 362 

can be found on Zenodo at https://zenodo.org/record/8148737. 363 
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 589 

Figure 1. Flowchart of the 4DEnVar-based LCDA system in E3SMv2 based on the DRP-4DVar method.  590 
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 591 

Figure 2. Schematic flowchart of the 4DEnVar-based LCDA system. The beginning of a month is at 592 

0000 UTC on the first day of the month, and the end of the month is at 0000 UTC on the first day of the 593 

next month. 𝑥𝑏 denotes the background vector including the backgrounds of all E3SMv2 components 594 

(atmosphere (𝑥𝑏
𝑎𝑡𝑚), ocean (𝑥𝑏

𝑜𝑐𝑛), sea ice (𝑥𝑏
𝑖𝑐𝑒), river transport (𝑥𝑏

𝑟𝑖𝑣𝑒𝑟) and land surface (𝑥𝑏
𝑙𝑛𝑑)). 𝑥𝑎 595 

consists of the assimilation analysis of land surface (𝑥𝑎
𝑙𝑛𝑑) and the backgrounds of other components. 596 

𝑦𝑏
𝑙𝑛𝑑  represents the simulated monthly mean soil temperature (�̅�𝑏

𝑚) and moisture (�̅�𝑏
𝑚) by E3SMv2 using 597 

𝑥𝑏 as the initial condition. 𝑦𝑜𝑏𝑠
𝑙𝑛𝑑  denotes the monthly mean GLDAS data of soil temperature (�̅�𝑜𝑏𝑠

𝑚 ) and 598 

moisture (�̅�𝑜𝑏𝑠
𝑚 ). 𝑦𝑜𝑏𝑠

′  denotes the observational innovation, which is the difference between the GLDAS 599 

data (𝑦𝑜𝑏𝑠
𝑙𝑛𝑑) and the observational background (𝑦𝑏

𝑙𝑛𝑑).  600 
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 601 

Figure 3. Time series of the reduction rate of the cost function from 1980 to 2016 in the 4DEnVar-based 602 

LCDA system.  603 
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 604 

Figure 4. Spatial distribution of the AE index for soil moisture from the surface to deep layers during 605 

the 1980-2016 period. The number at the top center denotes the depth of each soil layer.  606 

https://doi.org/10.5194/gmd-2023-124
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.



 28 

 607 

Figure 5. Same as in Figure 4, but for soil temperature.  608 
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 609 

Figure 6. Differences between correlations of soil moisture in Assim and CTRL with the GLDAS data 610 

from the surface to deep layers for the period of 1980-2016. The number at the top center denotes the 611 

depth of each soil layer.  612 
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 613 

Figure 7. Same as in Figure 6, but for soil temperature.  614 
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 615 

Figure 8. Vertical distributions of RMSE differences (Assim minus CTRL) for (a) soil moisture and (b) 616 

soil temperature averaged over the global land and throughout 1980-2016.  617 
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 618 

Figure 9. Time series of the vertically averaged global mean soil moisture and temperature bias (left) for 619 

Assim (red line) and CTRL (blue line), and RMSE differences (right, green line) between Assim and 620 

CTRL from 1980 to 2016.  621 
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 622 

Figure 10. Time series of soil moisture percentiles between May 2011 and April 2013 during the 2012 623 

U.S. Midwest drought. Red line: observation, blue line: Assim, orange line: CTRL. The correlation 624 

coefficients between Assim and CTRL with observations are also shown. The three vertical dashed lines 625 

mark the timing of drought start, drought peak and drought end, respectively. The start of the agricultural 626 

drought is defined as the month when soil moisture falls below the 20th percentile. The soil moisture 627 

percentiles are averaged over the U.S. Midwest (36°-50°N, 102°-88°W). The observed soil moisture is 628 

derived from ERA-Interim monthly soil moisture data.  629 
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 630 

Figure 11. Time series of precipitation anomaly over the Midwest between May 2011 and April 2013 631 

during the 2012 U.S. Midwest drought. Gray bar: observation, blue line: Assim, orange line: CTRL. The 632 

precipitation anomalies are calculated by removing the annual cycle and the long-term trend. The 633 

correlation coefficients of Assim and CTRL with observation are also shown. The precipitation anomalies 634 

are averaged over the U.S. Midwest (36°-50°N, 102°-88°W). The observed precipitation is derived from 635 

GPCP monthly precipitation data. 636 
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